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Motivation

* Modeling cellular dynamics provides key
insight into cellular response and behavior

e Spatially resolved approaches increase model
accuracy and may reveal novel responses

e Spatially driven dynamics may help in
identifying, understanding, and treating
phenotypes



Spatially resolved modeling:
Previous approaches

Vastly simplified geometries Manual segmentation
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1. Vazquez-Reina, A., Gelbart, M., Huang, D., Lichtman, J., Miller, E., & Pfister, H. 2011



Benefits of generative models

* Represents organelle localization, size and
shape in a conditionally dependent way

* Provides a continuous space for synthesizing
and subsequently analyzing changes in cell
geometries



Training generative models of
subcellular organization
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Creating synthetic cells




Diffeomorphic model learning:
Non-rigid image registration

Starting shape Target shape

1. Rohde G. K., Wang W., Peng T., and Murphy R.F. (2008).



Diffeomorphic model learning:
Non-rigid image registration

Starting shape Target shape
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1. Rohde G. K., Wang W., Peng T., and Murphy R.F. (2008).



Generating synthetic cells

* Use multi-dimensional scaling to create “shape
space”

 Sample a point in this shape space
* Generate synthetic cell by deforming nearby cells
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Exploring cellular parameter space

e Sample modal instances
e Sample outlier instances

* Sample a sequence of instances

GMM of 3D Hela shape space used
for probabilistic sampling




High-throughput spatially realistic
simulations

* Study the effects of spatial variance caused by
— Cell cycle
— Diseases
— Drugs
— Inherent cell variance

* Model large systems with high spatial realism

* Validate generative model accuracies



Automation of spatial modeling

Step 1: Biochemical systems modeling
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Example system

\\ * 354 reactions
\

N 78 species

e 7 “compartments”

—




Compact rule-based models

Traditional Modeling  Rule-Based Modeling
354 reactions 30 rules
78 species 10 molecule types
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ODE modeling

* Obtain a general idea of system behavior

e Check simulation to confirm “reasonable”
parameters/behaviors
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Automation of spatial modeling

Step 1: Biochemical systems modeling
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ldentifying compartments

e Extract compartment information from SBML

* |dentify relevant models using string matching

* Generate SBML-spatial instances with
biochemistry and necessary geometries

BNGL->SBML

CellOrganizer

Models:
Nuclear

Cell
Lysosome
Endosome
Mitochondria
Microtubule
Nucleosome

SBML-spatial+SBML




Shape space sampling

Grey — Experimentally observed
Colored — Simulated synthetic cells




Automation of spatial modeling

Step 1: Biochemical systems modeling
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MCell simulation results

“Prime” simulation to 0.2 seconds using
compartmental ODE model

Export as SBML file
Append geometric data using SBML-spatial
Import into MCell/CellBlender

Run full cell model 354 reactions, 78 species
Analyze the phosphorylation of /(ﬁﬁﬁw :
transcription factors




Cell-shape dependent dynamics

* Cells that are closer in shape space responded
more similarly than distant cells
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Conclusions

SBML/SBML-multi can be used to encode compact
rule-based models for complex biochemical networks
using BNGL

CellOrganizer can be used to read SBML files and
generate the necessary realistic geometries when
models are available

SBML-spatial can be used to export these spatially
resolved biochemical systems from CellOrganizer

Spatially resolved simulations can be performed in
high-throughput using tools such as MCell to study the
impact of cellular organization on response
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Shameless Plug
Short-Term Innovative Research (STIR) Grant Competition

* Crowd funded grant competition for pre-
doctoral students

e Students learn about the grant writing and
grant review process

* Students create R0O3 style grant proposals
* Top proposals are awarded funding

e Students conduct research and provide
progress reports

For more information and to donate

https://experiment.com/projects/short-term-innovative-research-stir-predoctoral-grant-
competition/



