

High-throughput whole-cell spatial modeling

Devin Sullivan, Jose-Juan Tapia, and Robert F. Murphy

Motivation

- Modeling cellular dynamics provides key insight into cellular response and behavior
- Spatially resolved approaches increase model accuracy and may reveal novel responses
- Spatially driven dynamics may help in identifying, understanding, and treating phenotypes

Spatially resolved modeling: Previous approaches

Vastly simplified geometries

Manual segmentation

Neuronal EM¹

Benefits of generative models

- Represents organelle localization, size and shape in a conditionally dependent way
- Provides a continuous space for synthesizing and subsequently analyzing changes in cell geometries

Training generative models of subcellular organization

Creating synthetic cells

Diffeomorphic model learning: Non-rigid image registration

Starting shape

Target shape

Diffeomorphic model learning: Non-rigid image registration

Starting shape

Target shape

1. Rohde G. K., Wang W., Peng T., and Murphy R.F. (2008).

Generating synthetic cells

- Use multi-dimensional scaling to create "shape space"
- Sample a point in this shape space
- Generate synthetic cell by deforming nearby cells

Exploring cellular parameter space

- Sample modal instances
- Sample outlier instances
- Sample a sequence of instances

High-throughput spatially realistic simulations

- Study the effects of spatial variance caused by
 - Cell cycle
 - Diseases
 - Drugs
 - Inherent cell variance
- Model large systems with high spatial realism
- Validate generative model accuracies

Automation of spatial modeling

Example system

354 reactions

78 species

7 "compartments"

Compact rule-based models

Traditional Modeling

354 reactions

78 species

Rule-Based Modeling

30 rules

10 molecule types

ODE modeling

- Obtain a general idea of system behavior
- Check simulation to confirm "reasonable" parameters/behaviors

Automation of spatial modeling

Identifying compartments

- Extract compartment information from SBML
- Identify relevant models using string matching
- Generate SBML-spatial instances with biochemistry and necessary geometries

Shape space sampling

Grey – Experimentally observed Colored – Simulated synthetic cells

Automation of spatial modeling

MCell simulation results

- "Prime" simulation to 0.2 seconds using compartmental ODE model
- Export as SBML file
- Append geometric data using SBML-spatial
- Import into MCell/CellBlender
- Run full cell model 354 reactions, 78 species
- Analyze the phosphorylation of transcription factors

Cell-shape dependent dynamics

 Cells that are closer in shape space responded more similarly than distant cells

Conclusions

- SBML/SBML-multi can be used to encode compact rule-based models for complex biochemical networks using BNGL
- CellOrganizer can be used to read SBML files and generate the necessary realistic geometries when models are available
- SBML-spatial can be used to export these spatially resolved biochemical systems from CellOrganizer
- Spatially resolved simulations can be performed in high-throughput using tools such as MCell to study the impact of cellular organization on response

Acknowledgments

Automation of simulations

- Jose Juan Tapia
- Markus Dittrich
- Rohan Arepally
- Jacob Czech

CellOrganizer

- Gregory Johnson
- Ivan Cao-Berg

Advisor

Robert F. Murphy

Funding

P41 GM103712

Shameless Plug

Short-Term Innovative Research (STIR) Grant Competition

- Crowd funded grant competition for predoctoral students
- Students learn about the grant writing and grant review process
- Students create R03 style grant proposals
- Top proposals are awarded funding
- Students conduct research and provide progress reports

For more information and to donate

https://experiment.com/projects/short-term-innovative-research-stir-predoctoral-grant-competition/